Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure.

نویسندگان

  • Guy R Fogel
  • Charles A Reitman
  • Weiqiang Liu
  • Stephen I Esses
چکیده

STUDY DESIGN Pedicle screw strength or load to failure was biomechanically evaluated, and the geometric characteristics of pedicle screw instrumentation systems were compared. OBJECTIVES To compare the features of pedicle screw systems, and to demonstrate the failure point of the polyaxial pedicle screw head. SUMMARY OF BACKGROUND DATA Many pedicle screw instrumentation systems are currently available to the spine surgeon. Each system has its unique characteristics. It is important for the surgeon to understand the differences in these pedicle screw systems. Pedicle screw load to failure has not been subjected to a comparison study. METHODS The physical characteristics of each pedicle screw instrumentation system were determined. Features of rods, instruments, and pedicle screws were cataloged. Biomechanical testing of the pedicle screw construct was performed to determine the site and force of the load to failure. Nine pedicle screw systems were evaluated. Testing was performed with a pneumatic testing system under load control. Three polyaxial screws were used for each test at a load rate of 100 N/second. The load failure value was the force at which the pedicle screw or polyaxial head-screw interface initially deflected. RESULTS Biomechanical testing demonstrated in all instances that the polyaxial head coupling to the screw was the first failure point. Although there have been subtle design differences in the instruments over time, the features of the pedicle screw instrument sets have become remarkably similar. CONCLUSIONS Biomechanical pedicle screw load-to-failure data demonstrated that the polyaxial head coupling to the screw is the first to fail and may be a protective feature of the pedicle screw, preventing pedicle screw breakage. Knowing the physical characteristics of the available pedicle screw instrumentation systems may allow the choice of pedicle screw best suited for a given clinical situation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Blasted and Grooved Low Profile Pedicle Screw Able to Resist High Compression Bending Loads

OBJECTIVE Polyaxial pedicle screws are a safe, useful adjunct to transpedicular fixation. However, the large screw head size can cause soft tissue irritation, high rod positioning, and facet joint injury. However, the mechanical resistance provided by small and low profile pedicle screws is very limited. We therefore developed a novel, low profile pedicle screw using grooving and blasting treat...

متن کامل

Design and biomechanical study of a modified pedicle screw.

OBJECTIVE In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torque and internal fixation strength. While polyaxial screws facilitate the assembly of the connecting rod, but its ball-in-cup locking mechanism reduces the static compressive bending ...

متن کامل

Monoaxial Pedicle Screws Are Superior to Polyaxial Pedicle Screws and the Two Pin External Fixator for Subcutaneous Anterior Pelvic Fixation in a Biomechanical Analysis

Purpose. Comparison of monoaxial and polyaxial screws with the use of subcutaneous anterior pelvic fixation. Methods. Four different groups each having 5 constructs were tested in distraction within the elastic range. Once that was completed, 3 components were tested in torsion within the elastic range, 2 to torsional failure and 3 in distraction until failure. Results. The pedicle screw system...

متن کامل

Biomechanical Comparison of 2 Different Pedicle Screw Systems During the Surgical Correction of Adult Spinal Deformities.

STUDY DESIGN A biomechanical spine model was used to evaluate the impact of screw design on screw-vertebra interface loading during simulated surgical corrections of adult scoliosis. OBJECTIVES To evaluate differences in screw-vertebra interface forces during adult scoliosis correction between favored angle (FA) screws with extension tabs and standard polyaxial screws while varying deformity ...

متن کامل

Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support

BACKGROUND Lumbosacral fusion is a relatively common procedure that is used in the management of an unstable spine. The anterior interbody cage has been involved to enhance the stability of a pedicle screw construct used at the lumbosacral junction. Biomechanical differences between polyaxial and monoaxial pedicle screws linked with various rod contours were investigated to analyze the respecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Spine

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2003